NEGLECTED DISEASE FUNDERS

FUNDER OVERVIEW

Public sector funding for neglected disease R&D fell once again in 2015 – extending the decline seen since 2012 – while industry investment edged slightly higher, following a significant increase in 2014. Coupled with a small drop in philanthropic funding, these changes resulted in both the lowest public sector funding share and the highest industry funding share ever recorded in the history of the G-FINDER survey.

The public sector remained by far the most significant source of neglected disease R&D funding in 2015, providing almost two-thirds ($1,925m, 63%) of the global total, with almost all public funding coming from HIC governments and multilaterals ($1,866m, 97%). The philanthropic sector provided 21% ($645m), and industry contributed 15% ($471m).

YOY public funding fell by $53m (-2.8%) – entirely driven by HIC governments and multilaterals (down $56m, -3.0%) – and philanthropic funding was $22m lower (down 3.5%). Industry funding increased marginally (up $7.1m, 1.7%). SMEs were responsible for more than half of the industry increase – YOY SME investment increased by $4.7m (up 9.9%) – despite representing only 18% of all industry investment.

Figure 21. Total R&D funding by sector 2007-2015
Ebola and other African VHF

In response to the 2014 West African Ebola epidemic, last year’s G-FINDER survey tracked funding for Ebola R&D for the first time (capturing FY2014 investments). This year, the survey scope was expanded to also include funding for R&D into African viral haemorrhagic fevers (VHFs) other than Ebola, as well as funding targeted at multiple African VHFs.

However, because of the unprecedented nature of the global response to the Ebola threat – and its distorting effect on investments in ‘traditional’ neglected disease R&D – funding for Ebola and other African VHFs (for both 2014 and 2015) has been analysed separately in this year’s G-FINDER report.

As noted at the beginning of this report, the true scale of the global response to the Ebola outbreak became apparent in the 2015 survey. Globally, a total of $631m was invested in R&D for Ebola and other African VHFs in 2015. This was an increase of nearly half-a-billion dollars compared to 2014 (up $464m, 288%), and meant that Ebola and other African VHFs received more R&D funding than any neglected disease except for HIV/AIDS.

The funder landscape looks markedly different when funding for Ebola and other African VHFs is included along with investment in ‘traditional’ neglected diseases. The relative contribution of the public sector remains unchanged, with its $2,307m investment representing 63% of all funding. But in a major change, industry ($697m, 19%) leapfrogs the philanthropic sector ($667m, 18%) to become the second most significant funding sector.

With funding for Ebola included, total YOY public sector funding actually increased (up $157m, 7.8%), and industry investment nearly doubled (up $201m, 44%) compared to 2014 levels. Total philanthropic funding would still have dropped slightly (down $15m, -2.3%), despite a small increase in philanthropic funding for Ebola in 2015.

Including funding for Ebola and other African VHFs has no impact on the ranking of top public sector funders by country: the US ($1,685m) remains the top contributor, providing 73% of all public funding, and the EU ($171m, 7.4%) is still the second-largest public funder globally. Notably, however, total US public funding – including Ebola and other African VHFs – increased by $156m (up 10%) compared to 2014, despite the US investing less in neglected diseases. The EU was responsible for the second largest public sector funding increase globally (up $62m, 57%) when its 2015 Ebola R&D investment of $45m is included.

The list of top funding organisations does change slightly when investment in Ebola and other African VHFs is included. The most notable change is that the aggregate pharmaceutical industry ($697m) collectively invested more than the Gates Foundation ($526m), making it the second-largest ‘individual’ funder behind the US NIH ($1,334m). The US DOD moves from 7th to 5th when its funding for Ebola and other African VHFs is included, and the US Biomedical Advanced Research and Development Authority (BARDA) moves into the top funders list (in 6th place), causing the German BMBF to drop out of the top 12.
Figure 22. Top R&D funders 2015 with Ebola and other African VHF included

- US NIH
- Aggregate industry
- Gates Foundation
- EU
- US DOD
- US BARDA
- Wellcome Trust
- USAID
- UK DFID
- UK MRC
- Inserm
- Indian ICMR

Legend:
- Yellow: Neglected diseases
- Purple: Ebola and other African VHF
PUBLIC FUNDERS

As has been the case in each of the past eight years, the top three public funders in 2015 were the US, the UK and the EU. The US was responsible for nearly three-quarters of all global public funding ($1,387m, 72%), with a contribution more than 11 times larger than that of the next biggest public funder. In 2015 this position was held by the EU, which contributed $125m (6.5% of global public funding) – the first time since 2008 that the EU has provided more neglected disease R&D funding than the UK.

YOY public funding for neglected disease R&D fell by $53m in 2015 (-2.8%), further extending the decline that started in 2012. Of the top three funders, only the EU (up $21m, 20%) significantly increased funding in 2015, reflecting its expanded contributions under the second phase of EDCTP. US public sector funding fell by $44m (-3.0%), led by the US DOD (down $24m, -25%), although we note that some of this decrease may be due to more accurate reporting of HIV/AIDS investments in 2015 by the US DOD. UK public funding fell by $22m (-18%), with decreases from the UK DFID (down $15m, -21%), reflecting the cyclical nature of DFID’s funding to product development partnerships (PDPs), and the UK MRC (down $6.5m, -14%).

Outside of the top three, the most significant drops in public funding came from Australia and the Netherlands. Australian funding nearly halved (down $16m, -47%), entirely due to a marked drop in funding reported by the Australian NHMRC (down $16m, -62%, to $9.8m), which in the past has consistently invested between $20m and $25m annually in neglected disease R&D. The Netherlands fell out of the Top 12 public funders for the first time since the G-FINDER survey began, due to a sharp drop in funding from the Dutch DGIS (down $13m, 76%) as it transitioned between PDP funding rounds. These drops were partially offset by smaller increases from Germany (up $6.6m, 39%), Switzerland (up $3.9m, 40%) and Ireland (up $3.3m, 150%).

Table 29. Top public R&D funders 2015

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>United States of America</td>
<td>1,409</td>
<td>1,431</td>
<td>1,650</td>
<td>1,572</td>
<td>1,538</td>
<td>1,638</td>
<td>1,462</td>
<td>1,430</td>
<td>1,387</td>
</tr>
<tr>
<td>EU</td>
<td>111</td>
<td>120</td>
<td>110</td>
<td>84</td>
<td>99</td>
<td>87</td>
<td>105</td>
<td>104</td>
<td>125</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>98</td>
<td>100</td>
<td>141</td>
<td>153</td>
<td>125</td>
<td>87</td>
<td>119</td>
<td>124</td>
<td>102</td>
</tr>
<tr>
<td>France</td>
<td>14</td>
<td>27</td>
<td>44</td>
<td>56</td>
<td>50</td>
<td>73</td>
<td>60</td>
<td>60</td>
<td>60</td>
</tr>
<tr>
<td>Germany</td>
<td>11</td>
<td>3.5</td>
<td>32</td>
<td>35</td>
<td>30</td>
<td>51</td>
<td>41</td>
<td>45</td>
<td>51</td>
</tr>
<tr>
<td>India</td>
<td>39</td>
<td>26</td>
<td>40</td>
<td>44</td>
<td>52</td>
<td>52</td>
<td>40</td>
<td>44</td>
<td>23</td>
</tr>
<tr>
<td>Australia</td>
<td>20</td>
<td>28</td>
<td>25</td>
<td>28</td>
<td>35</td>
<td>44</td>
<td>23</td>
<td>34</td>
<td>20</td>
</tr>
<tr>
<td>Switzerland</td>
<td>7.6</td>
<td>4.8</td>
<td>8.7</td>
<td>15</td>
<td>15</td>
<td>17</td>
<td>17</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>Japan</td>
<td>4.1</td>
<td>6.6</td>
<td>5.6</td>
<td>8.5</td>
<td>3.3</td>
<td>2.5</td>
<td>10</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>Canada</td>
<td>21</td>
<td>25</td>
<td>17</td>
<td>9.0</td>
<td>9.1</td>
<td>17</td>
<td>19</td>
<td>13</td>
<td>9.6</td>
</tr>
<tr>
<td>Ireland</td>
<td>22</td>
<td>8.1</td>
<td>4.8</td>
<td>6.0</td>
<td>5.8</td>
<td>6.9</td>
<td>11</td>
<td>2.7</td>
<td>8.8</td>
</tr>
<tr>
<td>Sweden</td>
<td>19</td>
<td>22</td>
<td>28</td>
<td>17</td>
<td>16</td>
<td>16</td>
<td>5.9</td>
<td>6.0</td>
<td>8.3</td>
</tr>
<tr>
<td>Subtotal of top 12^</td>
<td>1,801</td>
<td>1,883</td>
<td>2,147</td>
<td>2,022</td>
<td>2,002</td>
<td>2,084</td>
<td>1,960</td>
<td>1,904</td>
<td>1,844</td>
</tr>
<tr>
<td>Total public funding</td>
<td>1,905</td>
<td>2,014</td>
<td>2,269</td>
<td>2,153</td>
<td>2,120</td>
<td>2,185</td>
<td>2,077</td>
<td>1,978</td>
<td>1,925</td>
</tr>
</tbody>
</table>

* Subtotals for 2007–2014 top 12 reflect the top funders for those respective years, not the top 12 for 2015

No funding organisations from this country participated in the survey for this year

^ The term ‘European Union’ is used here and throughout the report to refer to funding from the EU budget that is managed by the European Commission or related EU partnerships and initiatives (such as the EDCTP and IMI).

The apparent drop in total Swiss public funding shown in Table 29 is due to partial underreporting of funding from the Swiss National Science Foundation (SNSF), with around $4m in funding data provided too late to be included in the G-FINDER analysis. This does not affect YOY analysis, as SNSF has not participated in every year of the G-FINDER survey.
Overall IDC public funding increased by $3.5m (7.1%), due to increases from India (up $4.7m, 12%) and South Africa (up $2.2m, 58%). Funding from the Indian Department of Biotechnology (Indian DBT) rose to $6.3m, after an unusually low year in 2014 (up $3.4m, 116%). The South Africa Medical Research Council (MRC) increased funding by $2.3m from a low base.

PUBLIC FUNDING BY GDP

Absolute funding can be a misleading measure of public R&D investment, as it can underplay the contributions of smaller countries and LMICs. For this reason, we have also analysed country investments in neglected disease R&D in relation to their gross domestic product (GDP).

When analysed by proportion of GDP rather than absolute funding, a slightly different picture of public funding emerges. Three countries not ranked in the top 12 funders by absolute funding appear when ranked by contribution relative to GDP: South Africa, Norway and Denmark. Conversely, Japan and Canada drop out of the list when GDP is factored in, as does the EU (which cannot be fairly analysed by this measure). The US, UK, France, Germany, India, Australia, Switzerland, Ireland and Sweden are all ranked in the top 12 using both metrics. Ireland provided the second highest contribution as a percentage of GDP of all countries in 2015 (second only to the US), even though it ranks eleventh by absolute funding amount ($8.8m).

Figure 23. Public R&D funding by GDP 2015

(A value of 10 is equivalent to an investment of 0.01% of GDP)

GDP figures taken from International Monetary Fund (IMF) World Economic Outlook database

*Figure provides value of (US$ funding / GDP) * 100,000

IDC increases or decreases refer to organisations that participated in both 2014 and 2015 (rather than in every year of the survey, as is the case in the remainder of the report), as IDC survey participation is inconsistent from year to year
HIGH-INCOME COUNTRIES AND MULTILATERALS

HIC governments and multilaterals provided $1,866m in neglected disease R&D funding in 2015 (97% of public funding). YOY funding fell by $56m (down 3.0%), with substantial reductions from the US (down $44m, -3.0%), the UK (down $22m, -18%) and Australia (down $16m, -47%) far outweighing the increases that came from the EU (up $21m, 20%), Germany (up $6.6m, 39%) and Switzerland (up $3.9m, 40%).

As in previous years, the top three diseases (HIV/AIDS, TB and malaria) received three-quarters ($1,408m, 75%) of all HIC and multilateral funding. YOY funding for HIV/AIDS fell by $56m (-6.5%), with the US DOD responsible for $34m of this drop. TB received more HIC and multilateral funding than it has in any year since 2009, with the slight increase in YOY investment (up $11m, 3.9%) coming largely from the EU (up $7.5m, 51%). Funding for malaria was essentially unchanged (up $0.3m, 0.1%).

Funding for most other diseases was either lower or flat. Outside of HIV/AIDS, the largest drop was for diarrhoeal diseases (down $11m, -13%), driven by reduced funding from the US NIH (down $5.2m, -12%) and the UK DFID (down $3.6m, -40%). Funding for hepatitis C also fell (down $6.6m, -36%), as funding from the French ANRS (down $4.6m, -53%) returned to more moderate levels after a large contribution in 2014. The only disease other than TB to receive notably more HIC and multilateral funding in 2015 was dengue (up $7.7m, 16%), primarily due to increased investment by the US NIH (up $5.3m, 13%).
Table 30. Public (HIC and multilaterals) R&D funding by disease 2007-2015

<table>
<thead>
<tr>
<th>Disease or R&D area</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015 % of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>HIV/AIDS</td>
<td>1,057</td>
<td>1,039</td>
<td>1,067</td>
<td>994</td>
<td>957</td>
<td>986</td>
<td>909</td>
<td>876</td>
<td>824</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>235</td>
<td>224</td>
<td>332</td>
<td>305</td>
<td>278</td>
<td>272</td>
<td>279</td>
<td>296</td>
<td>307</td>
</tr>
<tr>
<td>Malaria</td>
<td>231</td>
<td>251</td>
<td>284</td>
<td>306</td>
<td>284</td>
<td>282</td>
<td>284</td>
<td>279</td>
<td>277</td>
</tr>
<tr>
<td>Diarrhoeal diseases</td>
<td>49</td>
<td>66</td>
<td>101</td>
<td>83</td>
<td>92</td>
<td>86</td>
<td>86</td>
<td>83</td>
<td>72</td>
</tr>
<tr>
<td>Kinetoplastids</td>
<td>50</td>
<td>86</td>
<td>102</td>
<td>103</td>
<td>95</td>
<td>91</td>
<td>74</td>
<td>79</td>
<td>68</td>
</tr>
<tr>
<td>Dengue</td>
<td>39</td>
<td>42</td>
<td>57</td>
<td>50</td>
<td>57</td>
<td>53</td>
<td>44</td>
<td>49</td>
<td>58</td>
</tr>
<tr>
<td>Helminths (worms & flukes)</td>
<td>41</td>
<td>36</td>
<td>51</td>
<td>49</td>
<td>47</td>
<td>58</td>
<td>49</td>
<td>45</td>
<td>41</td>
</tr>
<tr>
<td>Salmonella infections</td>
<td>10</td>
<td>29</td>
<td>36</td>
<td>37</td>
<td>33</td>
<td>40</td>
<td>40</td>
<td>39</td>
<td>37</td>
</tr>
<tr>
<td>Bacterial pneumonia & meningitis</td>
<td>11</td>
<td>10</td>
<td>13</td>
<td>18</td>
<td>27</td>
<td>16</td>
<td>25</td>
<td>19</td>
<td>16</td>
</tr>
<tr>
<td>Hepatitis C (genotypes 4, 5 & 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>14</td>
</tr>
<tr>
<td>Cryptococcal meningitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2.9</td>
</tr>
<tr>
<td>Trachoma</td>
<td>-</td>
<td>1.9</td>
<td>2.0</td>
<td>3.0</td>
<td>6.3</td>
<td>9.3</td>
<td>5.5</td>
<td>6.5</td>
<td>4.6</td>
</tr>
<tr>
<td>Leprosy</td>
<td>3.8</td>
<td>4.0</td>
<td>6.9</td>
<td>3.9</td>
<td>4.5</td>
<td>11</td>
<td>6.0</td>
<td>5.7</td>
<td>4.4</td>
</tr>
<tr>
<td>Rheumatic fever</td>
<td>1.9</td>
<td>1.3</td>
<td>1.5</td>
<td>1.5</td>
<td>1.5</td>
<td>1.6</td>
<td>0.9</td>
<td>1.2</td>
<td>1.6</td>
</tr>
<tr>
<td>Leptospirosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.4</td>
</tr>
<tr>
<td>Buruli ulcer</td>
<td>2.2</td>
<td>1.5</td>
<td>1.6</td>
<td>3.7</td>
<td>3.4</td>
<td>3.4</td>
<td>4.0</td>
<td>0.6</td>
<td>0.8</td>
</tr>
<tr>
<td>Platform technologies</td>
<td>3.2</td>
<td>5.9</td>
<td>7.6</td>
<td>11</td>
<td>11</td>
<td>26</td>
<td>29</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>General diagnostic platforms</td>
<td>1.2</td>
<td>2.2</td>
<td>2.1</td>
<td>5.6</td>
<td>8.5</td>
<td>7.3</td>
<td>8.4</td>
<td>5.8</td>
<td>9.5</td>
</tr>
<tr>
<td>Adjuvants and immunomodulators</td>
<td><0.1</td>
<td>0.8</td>
<td>3.0</td>
<td>4.0</td>
<td>1.9</td>
<td>18</td>
<td>16</td>
<td>3.3</td>
<td>3.2</td>
</tr>
<tr>
<td>Delivery technologies and devices</td>
<td>2.0</td>
<td>2.9</td>
<td>2.5</td>
<td>1.2</td>
<td>0.4</td>
<td>0.4</td>
<td>4.0</td>
<td>1.6</td>
<td>0.6</td>
</tr>
<tr>
<td>Core funding of a multi-disease R&D organisation</td>
<td>91</td>
<td>82</td>
<td>64</td>
<td>68</td>
<td>83</td>
<td>66</td>
<td>65</td>
<td>61</td>
<td>77</td>
</tr>
<tr>
<td>Unspecified disease</td>
<td>54</td>
<td>63</td>
<td>74</td>
<td>48</td>
<td>66</td>
<td>101</td>
<td>67</td>
<td>44</td>
<td>43</td>
</tr>
<tr>
<td>Total public funding (HICs/multilaterals)</td>
<td>1,879</td>
<td>1,942</td>
<td>2,200</td>
<td>2,083</td>
<td>2,044</td>
<td>2,100</td>
<td>1,983</td>
<td>1,922</td>
<td>1,866</td>
</tr>
</tbody>
</table>

New disease added to G-FINDER in 2013
No reported funding

LOW- AND MIDDLE-INCOME COUNTRIES

Public funders in LMICs provided $59m for neglected disease R&D in 2015, accounting for 3.0% of global public funding. Inconsistent survey participation by many LMIC organisations makes long-term or multi-year comparisons of funding difficult, but funding from LMIC public funders who participated in both 2014 and 2015 grew by $3.2m (up 5.8%).

vi Overall LMIC funding is under-reported as FAPESP, a major Brazilian funder, was unable to provide data in time to be included in the G-FINDER analysis. FAPESP invested $5.3m in neglected disease R&D in 2015, with approximately half of that being for kinetoplastid R&D.

vi As LMIC survey participation is inconsistent from year to year, reported changes in LMIC public funding are based on organisations with funding data in both 2014 and 2015 (rather than in every year of the survey, as is the case in the remainder of the report). This group of funders provided $57m of the $59m in total LMIC public funding for 2015.
In 2015, 92% of LMIC public funding was provided by the three IDCs: India ($44m, 76%), South Africa ($6.0m, 10%) and Brazil ($3.3m, 5.6%). If the State of Sao Paulo Research Foundation’s (FAPESP) funding had been included, Brazil’s total investment would have been $8.6m.

YOY LMIC funding for TB, malaria and HIV/AIDS R&D increased by $5.6m (up 21%), driven by malaria, which increased by more than a third (up $3.1m, 35%), due in large part to a $2.1m increase from the Indian DBT, from a low base. The Indian Council of Scientific and Industrial Research (Indian CSIR) tripled its funding for TB (up $2.0m, 202%), returning to levels seen before 2014, supporting an overall increase of $1.7m (up 13%). A large jump in HIV/AIDS R&D investment from the South African MRC (up $2.4m from a low base) offset a reduction of $1.5m from Indian ICMR (-83%). Overall, HIV/AIDS R&D funding from LMICs rose $0.7m (up 17%).

Table 31. Public (LMIC) R&D funding by disease 2010-2015

<table>
<thead>
<tr>
<th>Disease or R&D area</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2015 % of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuberculosis</td>
<td>11</td>
<td>17</td>
<td>17</td>
<td>25</td>
<td>13</td>
<td>15</td>
<td>26</td>
</tr>
<tr>
<td>Malaria</td>
<td>9.9</td>
<td>13</td>
<td>20</td>
<td>19</td>
<td>9.1</td>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>Kinetoplastids</td>
<td>9.6</td>
<td>7.7</td>
<td>11</td>
<td>7.4</td>
<td>7.6</td>
<td>5.9</td>
<td>10</td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>17</td>
<td>18</td>
<td>12</td>
<td>18</td>
<td>5.6</td>
<td>5.5</td>
<td>9.4</td>
</tr>
<tr>
<td>Diarrhoeal diseases</td>
<td>7.1</td>
<td>9.1</td>
<td>4.7</td>
<td>5.3</td>
<td>5.5</td>
<td>5.5</td>
<td>9.3</td>
</tr>
<tr>
<td>Leprosy</td>
<td>3.5</td>
<td>2.5</td>
<td>2.0</td>
<td>4.6</td>
<td>3.5</td>
<td>4.6</td>
<td>7.8</td>
</tr>
<tr>
<td>Dengue</td>
<td>5.7</td>
<td>4.3</td>
<td>6.4</td>
<td>3.3</td>
<td>3.2</td>
<td>3.5</td>
<td>6.0</td>
</tr>
<tr>
<td>Helminths (worms & flukes)</td>
<td>1.2</td>
<td>1.9</td>
<td>2.9</td>
<td>1.7</td>
<td>2.6</td>
<td>1.7</td>
<td>3.0</td>
</tr>
<tr>
<td>Hepatitis C (genotypes 4, 5 & 6)</td>
<td>5.3</td>
<td>0.2</td>
<td>0.2</td>
<td><0.1</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Rheumatic fever</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Salmonella infections</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.5</td>
<td>0.6</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Bacterial pneumonia & meningitis</td>
<td>0.3</td>
<td>0.1</td>
<td>0.2</td>
<td><0.1</td>
<td>0.3</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Leptospirosis</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>1.0</td>
</tr>
<tr>
<td>Platform technologies</td>
<td>3.3</td>
<td>0.4</td>
<td>4.4</td>
<td>0.5</td>
<td>0.3</td>
<td>1.3</td>
<td>2.1</td>
</tr>
<tr>
<td>Delivery technologies and devices</td>
<td>1.9</td>
<td><0.1</td>
<td>3.9</td>
<td>0.4</td>
<td>0.3</td>
<td>1.2</td>
<td>2.0</td>
</tr>
<tr>
<td>General diagnostic platforms</td>
<td>0.9</td>
<td>0.4</td>
<td>0.5</td>
<td><0.1</td>
<td>0.1</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Adjuvants and immunomodulators</td>
<td>0.6</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Core funding of a multi-disease R&D organisation</td>
<td>0.4</td>
<td>0.3</td>
<td>-</td>
<td>0.4</td>
<td>0.3</td>
<td>1.5</td>
<td>2.5</td>
</tr>
<tr>
<td>Unspecified disease</td>
<td>-</td>
<td>0.4</td>
<td>3.7</td>
<td>2.2</td>
<td>3.9</td>
<td>0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Total public funding (LMICs)</td>
<td>70</td>
<td>76</td>
<td>85</td>
<td>94</td>
<td>56</td>
<td>59</td>
<td>100</td>
</tr>
</tbody>
</table>

- No reported funding
- New disease added to G-FINDER in 2013
PHILANTHROPIC FUNDERS

Philanthropic funders invested $645m in neglected disease R&D in 2015 (21% of the total). The two largest contributors – the Gates Foundation and the Wellcome Trust – together contributed $610m (95% of philanthropic funding).

YOY philanthropic funding decreased slightly (down $22m, -3.5%). While funding from the Gates Foundation was steady (down $2.3m, -0.4%), the Wellcome Trust decreased investment by $27m (down 22%), but the organisation remained by far the second largest philanthropic funder of neglected disease R&D.

Table 32. Top philanthropic R&D funders 2015

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Gates Foundation</td>
<td>518</td>
<td>691</td>
<td>627</td>
<td>517</td>
<td>513</td>
<td>509</td>
<td>526</td>
<td>520</td>
<td>518</td>
<td>80</td>
</tr>
<tr>
<td>Wellcome Trust</td>
<td>56</td>
<td>59</td>
<td>64</td>
<td>75</td>
<td>89</td>
<td>138</td>
<td>127</td>
<td>119</td>
<td>92</td>
<td>14</td>
</tr>
<tr>
<td>Gavi</td>
<td>12</td>
<td>17</td>
<td>2.5</td>
<td>9.6</td>
<td>18</td>
<td>9.9</td>
<td>1.5</td>
<td>5.8</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td>MSF</td>
<td>6.6</td>
<td>6.7</td>
<td>4.2</td>
<td>4.3</td>
<td>4.8</td>
<td>5.4</td>
<td>5.5</td>
<td>4.4</td>
<td>5.8</td>
<td></td>
</tr>
<tr>
<td>Fundació La Caixa</td>
<td>0.3</td>
<td>0.3</td>
<td>3.2</td>
<td>2.6</td>
<td>2.9</td>
<td>3.4</td>
<td>0.5</td>
<td>1.2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>UBS Optimus Foundation</td>
<td>0.5</td>
<td>1.1</td>
<td>1.1</td>
<td>6.7</td>
<td>5.0</td>
<td>3.1</td>
<td>2.5</td>
<td>3.3</td>
<td>1.4</td>
<td></td>
</tr>
<tr>
<td>Funds raised from the general public</td>
<td>2.3</td>
<td>1.4</td>
<td>0.5</td>
<td>0.4</td>
<td>0.5</td>
<td>0.4</td>
<td>0.7</td>
<td>0.9</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Medicor Foundation</td>
<td>0.5</td>
<td>0.8</td>
<td>0.6</td>
<td>0.5</td>
<td>0.7</td>
<td>0.5</td>
<td>0.7</td>
<td>0.1</td>
<td>0.2</td>
<td></td>
</tr>
<tr>
<td>All other philanthropic organisations</td>
<td>8.5</td>
<td>16</td>
<td>17</td>
<td>18</td>
<td>15</td>
<td>20</td>
<td>12</td>
<td>6.8</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>Total philanthropic funding</td>
<td>604</td>
<td>792</td>
<td>715</td>
<td>625</td>
<td>631</td>
<td>688</td>
<td>696</td>
<td>655</td>
<td>645</td>
<td>100</td>
</tr>
</tbody>
</table>

Funding organisation did not participate in the survey for this year. Any contributions listed are based on data reported by funding recipients so may be incomplete.

The most notable change in disease funding from philanthropic organisations was a $41m reduction in malaria R&D investment (-24%). This is the lowest level of philanthropic funding for malaria since the G-FINDER survey began, and was the result of decreases from both the Gates Foundation (down $35m, -25%) and the Wellcome Trust (down $5.6m, -23%). Philanthropic funding for kinetoplastid R&D fell by $17m (-50%), driven by a $16m decrease from the Gates Foundation (down 86%), although this followed a large upfront grant disbursement to DNDi in 2014.

Philanthropic funding for bacterial pneumonia & meningitis more than tripled (up $27m), reflecting a return to more traditional funding levels from the Gates Foundation (up $28m, 519%).
Table 33. Philanthropic R&D funding by disease 2007-2015

<table>
<thead>
<tr>
<th>Disease or R&D area</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2015 % of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tuberculosis</td>
<td>135</td>
<td>158</td>
<td>123</td>
<td>135</td>
<td>116</td>
<td>121</td>
<td>143</td>
<td>148</td>
<td>141</td>
<td>22</td>
</tr>
<tr>
<td>Malaria</td>
<td>172</td>
<td>228</td>
<td>239</td>
<td>137</td>
<td>199</td>
<td>167</td>
<td>152</td>
<td>169</td>
<td>128</td>
<td>20</td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>116</td>
<td>199</td>
<td>151</td>
<td>152</td>
<td>151</td>
<td>160</td>
<td>148</td>
<td>136</td>
<td>128</td>
<td>20</td>
</tr>
<tr>
<td>Diarrheal diseases</td>
<td>63</td>
<td>48</td>
<td>54</td>
<td>52</td>
<td>36</td>
<td>48</td>
<td>62</td>
<td>46</td>
<td>49</td>
<td>7.6</td>
</tr>
<tr>
<td>Bacterial pneumonia & meningitis</td>
<td>7.0</td>
<td>31</td>
<td>26</td>
<td>50</td>
<td>39</td>
<td>52</td>
<td>27</td>
<td>7.5</td>
<td>41</td>
<td>6.3</td>
</tr>
<tr>
<td>Dengue</td>
<td>2.2</td>
<td>3.2</td>
<td>3.2</td>
<td>4.5</td>
<td>6.9</td>
<td>11</td>
<td>21</td>
<td>25</td>
<td>24</td>
<td>3.7</td>
</tr>
<tr>
<td>Helminths (worms & flukes)</td>
<td>12</td>
<td>30</td>
<td>25</td>
<td>23</td>
<td>30</td>
<td>27</td>
<td>33</td>
<td>29</td>
<td>22</td>
<td>3.4</td>
</tr>
<tr>
<td>Kineto plastids</td>
<td>73</td>
<td>53</td>
<td>58</td>
<td>32</td>
<td>24</td>
<td>22</td>
<td>21</td>
<td>34</td>
<td>17</td>
<td>2.6</td>
</tr>
<tr>
<td>Salmonella infections</td>
<td>0.1</td>
<td>1.0</td>
<td>3.8</td>
<td>7.3</td>
<td>9.7</td>
<td>13</td>
<td>15</td>
<td>11</td>
<td>16</td>
<td>2.6</td>
</tr>
<tr>
<td>Leprosy</td>
<td>0.8</td>
<td>1.1</td>
<td>1.1</td>
<td>2.6</td>
<td>1.7</td>
<td>2.2</td>
<td>2.0</td>
<td>1.2</td>
<td>1.1</td>
<td>0.2</td>
</tr>
<tr>
<td>Buruli ulcer</td>
<td>-</td>
<td>0.2</td>
<td>0.3</td>
<td>1.6</td>
<td>2.3</td>
<td>2.7</td>
<td>2.4</td>
<td>3.0</td>
<td>1.0</td>
<td>0.1</td>
</tr>
<tr>
<td>Trachoma</td>
<td>1.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.6</td>
<td>0.5</td>
<td>0.3</td>
<td>0.2</td>
<td><0.1</td>
</tr>
<tr>
<td>Cryptococcal meningitis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.3</td>
<td><0.1</td>
</tr>
<tr>
<td>Hepatitis C (genotypes 4, 5 & 6)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.1</td>
<td><0.1</td>
</tr>
<tr>
<td>Leptospirosis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td><0.1</td>
<td>-</td>
</tr>
<tr>
<td>Rheumatic fever</td>
<td>-</td>
<td>0.1</td>
<td>0.2</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Platform technologies</td>
<td>2.3</td>
<td>9.3</td>
<td>16</td>
<td>15</td>
<td>6.8</td>
<td>19</td>
<td>15</td>
<td>11</td>
<td>18</td>
<td>2.8</td>
</tr>
<tr>
<td>Adjuvants and immunomodulators</td>
<td>-</td>
<td>1.5</td>
<td>2.5</td>
<td>5.6</td>
<td>3.8</td>
<td>9.3</td>
<td>4.9</td>
<td>5.0</td>
<td>8.5</td>
<td>1.3</td>
</tr>
<tr>
<td>Delivery technologies and devices</td>
<td>0.1</td>
<td>4.7</td>
<td>6.3</td>
<td>5.0</td>
<td>1.4</td>
<td>0.7</td>
<td>1.6</td>
<td>2.4</td>
<td>5.7</td>
<td>0.9</td>
</tr>
<tr>
<td>General diagnostic platforms</td>
<td>2.3</td>
<td>3.1</td>
<td>7.7</td>
<td>3.9</td>
<td>1.6</td>
<td>9.2</td>
<td>8.2</td>
<td>3.8</td>
<td>4.0</td>
<td>0.6</td>
</tr>
<tr>
<td>Core funding of a multi-disease R&D organisation</td>
<td>15</td>
<td>11</td>
<td>6.3</td>
<td>5.8</td>
<td>4.8</td>
<td>42</td>
<td>43</td>
<td>22</td>
<td>30</td>
<td>4.7</td>
</tr>
<tr>
<td>Unspecified disease</td>
<td>3.7</td>
<td>20</td>
<td>8.5</td>
<td>7.4</td>
<td>3.2</td>
<td>2.3</td>
<td>11</td>
<td>12</td>
<td>27</td>
<td>4.2</td>
</tr>
<tr>
<td>Total philanthropic funding</td>
<td>604</td>
<td>792</td>
<td>715</td>
<td>625</td>
<td>631</td>
<td>688</td>
<td>696</td>
<td>655</td>
<td>645</td>
<td>100</td>
</tr>
</tbody>
</table>

- New disease added to G-FINDER in 2013
- No reported funding
PRIVATE SECTOR FUNDERS

The private sector invested $471m in neglected disease R&D in 2015 (15% of the total). This is both the largest amount and the highest share of funding from industry in the history of the G-FINDER survey. The proportion of industry investment that came from MNCs ($388m, 82%) compared to SMEs ($83m, 18%) was similar to 2014 (when it was 83% and 17%, respectively).

YOY industry funding increased by $7.1m (up 1.7%). This increase came primarily from SMEs, which invested $4.7m more than in 2014 (up 9.9%). MNC investment was steady (up $2.4m, 0.6%).

MULTINATIONAL PHARMACEUTICAL COMPANIES

In 2015, almost three quarters ($280m, 72%) of MNC investment in neglected disease R&D was directed to three diseases (malaria, TB and HIV/AIDS), compared to 66% in 2014.

More than a third ($141m, 36%) of all MNC investment in 2015 was in malaria. YOY industry investment in malaria R&D rose substantially (up $20m, 18%) for the second year in a row, as key drug candidates from a number of MNCs moved into later stage clinical trials. TB received a quarter ($92m, 24%) of all MNC investment. YOY MNC investment in TB was essentially steady (down $2.4m, -2.5%), suggesting that the trend of declining industry support for TB R&D – which has been apparent since 2010 – may be slowing. MNCs invested $47m in HIV/AIDS in 2015 (up $7.5m, 19%), more than in any previous year in the history of the survey. As was the case in 2014, the vast majority (85%) of this investment was in vaccine R&D.

YOY MNC investment in bacterial pneumonia & meningitis R&D fell by $19m (down 62%) in 2015, in large part due to the conclusion of regulatory trials to support LMIC uptake of the latest generation of pneumococcal vaccines. MNC investment in diarrhoeal diseases (down $10m, -34%) and hepatitis C (down $4.6m, -18%) also fell.

Of the third tier diseases, only leprosy received any contributions from MNCs ($0.7m).
SMALL PHARMACEUTICAL AND BIOTECHNOLOGY FIRMS

SMEs invested $83m in neglected disease R&D in 2015 (representing 18% of total industry funding). Innovative developing country (IDC) firms contributed the majority of this ($55m, 66%), with developed country firms contributing the remainder ($28m, 34%).

Irregular survey participation among SMEs makes analysis of funding trends difficult, but regular funders6 increased their investment in several diseases, including bacterial pneumonia & meningitis (up $6.6m, 39%), diarrhoeal diseases (up $4.8m, 55%) and TB (up $1.9m, 24%). Funding from this group of participants decreased for helminth R&D (down $3.2m, -79%), after unusually high funding levels in 2014 related to late-stage vaccine development costs.

As was the case in 2014, there was no funding for third tier diseases from SMEs.

6 SME increases or decreases refer to organisations that had funding data included in both 2014 and 2015, rather than in every year of the survey, as SME survey participation is inconsistent from year to year.
In addition to their direct R&D spend, companies conducting neglected disease R&D incur a range of other costs, such as infrastructure costs and costs of capital. These costs have not been included in G-FINDER due to the difficulty of accurately quantifying or allocating them to neglected disease programmes.

Companies also provide in-kind contributions that are specifically targeted to neglected disease R&D, but cannot easily be captured in monetary terms. Although difficult to quantify, these inputs are of substantial value to their recipients and a significant cost to companies.

We note that while some companies have nominated areas where they provide such contributions, others wished to remain anonymous.

Table 35. SME R&D funding by disease 2007-2015

<table>
<thead>
<tr>
<th>Disease or R&D area</th>
<th>2007</th>
<th>2008</th>
<th>2009</th>
<th>2010</th>
<th>2011</th>
<th>2012</th>
<th>2013</th>
<th>2014</th>
<th>2015</th>
<th>2015 % of total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bacterial pneumonia & meningitis</td>
<td>0.5</td>
<td>21</td>
<td>9.0</td>
<td>7.6</td>
<td>5.9</td>
<td>5.4</td>
<td>18</td>
<td>17</td>
<td>24</td>
<td>29</td>
</tr>
<tr>
<td>Diarrhoeal diseases</td>
<td>2.8</td>
<td>1.9</td>
<td>5.3</td>
<td>0.7</td>
<td>5.1</td>
<td>2.6</td>
<td>6.3</td>
<td>8.8</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>Salmonella infections</td>
<td>-</td>
<td>13</td>
<td>1.9</td>
<td>0.2</td>
<td>0.1</td>
<td>0.3</td>
<td>6.0</td>
<td>12</td>
<td>11</td>
<td>13</td>
</tr>
<tr>
<td>Tuberculosis</td>
<td>17</td>
<td>15</td>
<td>18</td>
<td>18</td>
<td>15</td>
<td>9.1</td>
<td>5.0</td>
<td>8.1</td>
<td>10</td>
<td>12</td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>12</td>
<td>28</td>
<td>19</td>
<td>14</td>
<td>9.5</td>
<td>7.4</td>
<td>6.2</td>
<td>8.3</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Malaria</td>
<td>10</td>
<td>9.7</td>
<td>19</td>
<td>11</td>
<td>7.1</td>
<td>7.0</td>
<td>5.8</td>
<td>6.3</td>
<td>6.6</td>
<td>7.9</td>
</tr>
<tr>
<td>Kineto plastids</td>
<td><0.1</td>
<td>1.7</td>
<td>1.3</td>
<td>1.4</td>
<td>3.8</td>
<td>0.8</td>
<td>0.6</td>
<td>6.9</td>
<td>4.7</td>
<td>5.7</td>
</tr>
<tr>
<td>Dengue</td>
<td>2.4</td>
<td>0.2</td>
<td>0.9</td>
<td>0.5</td>
<td>0.5</td>
<td>0.3</td>
<td>0.5</td>
<td>1.0</td>
<td>1.2</td>
<td></td>
</tr>
<tr>
<td>Helminths (worms & flukes)</td>
<td>0.7</td>
<td>1.1</td>
<td>0.4</td>
<td>3.1</td>
<td>5.1</td>
<td>0.7</td>
<td>0.1</td>
<td>8.1</td>
<td>0.9</td>
<td>1.0</td>
</tr>
<tr>
<td>Trachoma</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.2</td>
<td>4.5</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Leprosy</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.1</td>
<td>0.1</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Buruli ulcer</td>
<td><0.1</td>
<td>0.2</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Core funding of a multi-disease R&D organisation</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.2</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Unspecified disease</td>
<td>0.7</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td><0.1</td>
<td>1.7</td>
<td>5.0</td>
<td>3.3</td>
<td>4.0</td>
</tr>
<tr>
<td>Total SME funding</td>
<td>46</td>
<td>92</td>
<td>75</td>
<td>59</td>
<td>57</td>
<td>34</td>
<td>50</td>
<td>79</td>
<td>83</td>
<td>100</td>
</tr>
</tbody>
</table>

- No reported funding
Table 36. Typical industry in-kind contributions 2015

<table>
<thead>
<tr>
<th>In-kind contribution</th>
<th>Examples</th>
<th>Some company donors⁷</th>
</tr>
</thead>
</table>
| Transfer of technology and technical expertise to develop, manufacture, register and distribute neglected disease products | • Identifying scientific obstacles
• Sharing best practices and developing systems for clinical, technical and regulatory support
• Developing capacity for pharmacovigilance
• Donating equipment | Eisai
GSK
Johnson & Johnson
MSD
Novartis
Otsuka
Sanofi |
| Provision of expertise | • Supporting clinical trials
• Collaboration of scientists, sharing trial results and facilitating parallel, concurrent testing
• Participation on scientific advisory or management boards of external organisations conducting neglected disease R&D
• Providing expertise in toxicology/ADME and medicinal chemistry
• Evaluating new compounds proposed by external partners
• Allowing senior staff to take sabbaticals to work with neglected disease groups | AbbVie
Eisai
GSK
Johnson & Johnson
MSD
Novartis
Otsuka
Pfizer
Sanofi |
| Teaching and training | • In-house attachments offered to Developing Country trainees in medicinal chemistry, clinical trial training etc
• Providing training courses for Developing Country researchers at academic institutions globally
• Organising health care provider training in Developing Country for pharmacovigilance of new treatments
• Organising conferences and symposia on neglected disease-specific topics | AbbVie
GSK
Johnson & Johnson
MSD
Novartis
Otsuka
Sanofi |
| Intellectual property | • Access to proprietary research tools and databases
• Sharing compound libraries with WHO or with researchers who can test and screen them for possible treatments
• Providing public and non-for-profit groups with information on proprietary compounds they are seeking to develop for a neglected disease indication
• Forgoing license or providing royalty-free license on co-developed products | AbbVie
Eisai
GSK
Johnson & Johnson
MSD
Novartis
Pfizer
Sanofi |
| Regulatory assistance | • Allowing right of reference to confidential dossiers and product registration files to facilitate approval of generic combination products
• Covering the cost of regulatory filings
• Providing regulatory expertise to explore optimal registration options for compounds in development | Eisai
GSK
Johnson & Johnson
Sanofi |

⁷ Company donors listed do not necessarily engage in all activities listed as examples of in-kind contributions
FUNDING BY ORGANISATION

Neglected disease R&D funding continued to rely heavily on a handful of funders, with 12 funders (including aggregate industry) contributing 91% of all global funding ($2,781m). The US NIH, the Gates Foundation and industry once again accounted for almost three quarters of global funding ($2,210m, 73%, compared to 72% in 2014).

Although there was little change from the two largest funders – funding from both the US NIH (down $14m, -1.2%) and the Gates Foundation (down $2.3m, -0.4%) was essentially steady compared to 2014 – there were some significant changes among the remainder of the top 12.

Only four of the 11 individual organisations in the top 12 (i.e. excluding aggregate industry) increased their neglected disease R&D funding in 2015. With the exception of the EDCTP-related increase from the EU (up $21m, 20%), these increases were generally modest: the German BMBF increased its funding by $6.6m (up 39%), entering the list of top 12 funders for the first time, Inserm by $6.3m (up 16%) and USAID by $3.6m (up 4.6%).

Reductions in funding were much larger than the increases. The most significant came from the Wellcome Trust (down $27m, -22%) and the US DOD (down $24m, -25%) – although the latter may be partly due to more accurate reporting of HIV/AIDS investment by the US DOD in 2015. These were followed by a $16m reduction in funding from the Australian NHMRC (down 62%) – which dropped out of the top 12 for the first time since 2009 – and a grant cycle-related drop from the UK DFID (down $15m, -21%).

Table 37. Top neglected disease R&D funders 2015

<table>
<thead>
<tr>
<th>Funder</th>
<th>US$ (millions)</th>
<th>2015 % of total</th>
<th>2002-2015 trend</th>
</tr>
</thead>
<tbody>
<tr>
<td>US NIH</td>
<td>1,210</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>Gates Foundation</td>
<td>518</td>
<td>17</td>
<td></td>
</tr>
<tr>
<td>Aggregate industry</td>
<td>214</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>EU</td>
<td>111</td>
<td>4.1</td>
<td></td>
</tr>
<tr>
<td>Wellcome Trust</td>
<td>56</td>
<td>3.0</td>
<td></td>
</tr>
<tr>
<td>USAID</td>
<td>92</td>
<td></td>
<td></td>
</tr>
<tr>
<td>US DOD</td>
<td>84</td>
<td>2.6</td>
<td></td>
</tr>
<tr>
<td>UK DFID</td>
<td>45</td>
<td>1.9</td>
<td></td>
</tr>
<tr>
<td>Inserm</td>
<td>1.6</td>
<td>0.8</td>
<td></td>
</tr>
<tr>
<td>UK MRC</td>
<td>48</td>
<td>1.3</td>
<td></td>
</tr>
<tr>
<td>Indian ICMR</td>
<td>24</td>
<td>1.1</td>
<td></td>
</tr>
<tr>
<td>German BMBF</td>
<td>4.8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Subtotal of top 12</td>
<td>2,462</td>
<td>91</td>
<td></td>
</tr>
<tr>
<td>Total R&D funding</td>
<td>2,738</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

^ Subtotals for 2007-2014 top 12 reflect the top funders for those respective years, not the top 12 for 2015

*Funding organisation did not participate in the survey for this year. Any contributions listed are based on data reported by funding recipients so may be incomplete